A conserved trimerization motif controls the topology of short coiled coils.

نویسندگان

  • Richard A Kammerer
  • Dirk Kostrewa
  • Pavlos Progias
  • Srinivas Honnappa
  • David Avila
  • Ariel Lustig
  • Fritz K Winkler
  • Jean Pieters
  • Michel O Steinmetz
چکیده

In recent years, short coiled coils have been used for applications ranging from biomaterial to medical sciences. For many of these applications knowledge of the factors that control the topology of the engineered protein systems is essential. Here, we demonstrate that trimerization of short coiled coils is determined by a distinct structural motif that encompasses specific networks of surface salt bridges and optimal hydrophobic packing interactions. The motif is conserved among intracellular, extracellular, viral, and synthetic proteins and defines a universal molecular determinant for trimer formation of short coiled coils. In addition to being of particular interest for the biotechnological production of candidate therapeutic proteins, these findings may be of interest for viral drug development strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain.

Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins o...

متن کامل

Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif.

Coiled-coils are widespread protein-protein interaction motifs typified by the heptad repeat (abcdefg)(n) in which "a" and "d" positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583-611), "Q1-short," of the coiled-coil assembly specific...

متن کامل

Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily.

Alpha-helical coiled-coils are widely occurring protein oligomerization motifs. Here we show that most members of the collagen superfamily contain short, repeating heptad sequences typical of coiled coils. Such sequences are found at the N-terminal ends of the C-propeptide domains in all fibrillar procollagens. When fused C-terminal to a reporter molecule containing a collagen-like sequence tha...

متن کامل

Structural Basis for the Oligomerization-State Switch from a Dimer to a Trimer of an Engineered Cortexillin-1 Coiled-Coil Variant

Coiled coils are well suited to drive subunit oligomerization and are widely used in applications ranging from basic research to medicine. The optimization of these applications requires a detailed understanding of the molecular determinants that control of coiled-coil formation. Although many of these determinants have been identified and characterized in great detail, a puzzling observation i...

متن کامل

Anti-parallel Coiled Coils Structure Prediction by Support Vector Machine Classification

Coiled coils is an important 3-D protein structure with two or more stranded alpha-helical motif wounded around to form a “knobs-into-holes” structure. In this paper we propose an SVM classification approach to predict the antiparallel coiled coils structure based on the primary amino acid sequence. The training dataset for the machine learning are collected from SOCKET database which is a SOCK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 39  شماره 

صفحات  -

تاریخ انتشار 2005